
1

Tools for Vulnerability Analysis
and Automated Code Repair



4

Progress
Our foundational work:

•Detecting malicious injects in code

•Secure Coding Security Standards: language specific guides
•Source Code Analysis Lab (SCALe) Static Code Analysis

Recent Developments:
•Combine with broader Architectural profile: Code Risk Estimation Worksheet (CREW)

Recent Research:
•Automatically improve false-positive rates (Type I errors) of static analysis findings
•Automatically repair code

-High confidence it is a problem
-High confidence the change will not introduce a negative impact to the program
-Ideally: high confidence we fix the problem



5

Secure Coding Research
Rapid Adjudication of Static Analysis Alerts During Continuous Integration

•Automated predictions to improve prioritization of source code analysis using machine learning 
and information from multiple analysis tools over multiple iterations.

Automated Code Repair (ACR)
•Fixing code based on anti-patterns and patterns for repair, rather than just alerting developers 

and testers to a potential defect.
•Applying source code analysis techniques to binary code for analysis and repair

Semantic Equivalence Checker for Binary Static Analysis
•Evaluating the effectiveness of using source static analysis tools on decompiled binary.

Automated Repair of Static Analysis Alerts (FY23-24)
•Automatically change code (or propose code changes) to resolve simple findings from Static 

Analysis tools, even if false positives. (reduce manual analysis when no cost)
Detecting Inserted Malicious Code with Information Flows (FY23-24)

•Develop tool to detect exfiltration of sensitive data and sensitive operations driven by external 
in pu t



6

Additional Research

Automated Support (ML) for Program Understanding
•Reverse Engineering support
•Defect Identification
• ChatGPT…

Binary Analysis
• Pharos
• Ghidra

Lower System Level Code Analysis (Firmware, UEFI…)

Software Understanding for National Security (SUNS 2023) Workshop



8

s
cs

Prioritizing Alerts

Ana l yzer

Ana l yzer

Ana l yzer

Codebases

Alerts 
(Meta-
a lerts)

Expected True Positive (e-TP) or
Expected False Positive (e-FP), 

and 
the rest as Indeterminate (I) 

Today

Project Goal

Classification algorithm development for CI systems, that
precisely and with high recall, classifies at least
as many manually-adjudicated meta-alerts as: 

Problem:
Solution: 

too many (meta-)alerts
automate handling



9

Prioritizing Alerts

Research progression:
•FY16 –Prioritizing Vulnerabilities from Static Analysis with Classification Models: Proof 

of concept of Machine Learning for Prioritizing Static Analysis Results
•FY17 –Rapid Expansion of Classification Models to Prioritize Static Analysis Alerts: 

Adding open source test suite code for data
•FY18-19 –Rapid Construction of Accurate Automatic Alert Handling System: 

Reference Model & Reference Prototype: Source Code Analysis Integrated Framework 
Environment (SCAIFE)

•FY20-21 -Rapid Adjudication of Static Analysis Alerts During Continuous Integration: 
Support for Continuous Integration (automated triggers & iterative data)



10

Automated Code Repair (ACR) tool as a black box

Input:Buildable codebase
Output:Repaired source
code, suitable for committing
to repository
We support C and plan to
have limited support for C++

Envisioned use of tool
•Use before every release build
•Use occasionally for debugging builds
• Intended for ordinary developers
•Can be a tool in the DevOps toolchain
•Can be used for legacy code and for new code

printf(
n
ame) ;

printf( 
"%s",
n ame) ;

ACR Tool



11

Automated Code Repair

Research progression:
•FY16 Integer Overflow: (start + i) UADD (start, i)
•FY17 Inference of Memory Bounds (out of bounds reads like HeartBleed): 

abort or warning
•F18-20 -Memory Safety: Fat Pointers
•FY21 -Combined Analysis for Source Code and Binaries for Software Assurance: 

•FY22 -Decompilationfor Software Assurance: Analysis and Repair of Correctly 

Hypothesis: Many violations of rules follow a small number of anti-patterns with
corresponding patterns for repair, and these can be feasibly recognized by static analysis.

• 

Semantic Equivalence Checking of Decompiled Code (LLVM Focus)

Decompiled Functions (GhidraFocus)

printf(attacker_string) printf("%s", attacker_string)



12

Source Code Repair Pipeline

1. Record 
Source↔AST

mapping

map

back to source

2. Record
AST↔IR
mapping

map

4. Map repaired IR 
back to AST

3. Perform analysis
and repair at IR 

le ve l

Source 
Code

Abstract
Syntax 

Tree (AST)

Intermediate
Representation (IR)

5. Map repaired AST 


